488 research outputs found

    High-Resolution Optical Functional Mapping of the Human Somatosensory Cortex

    Get PDF
    Non-invasive optical imaging of brain function has been promoted in a number of fields in which functional magnetic resonance imaging (fMRI) is limited due to constraints induced by the scanning environment. Beyond physiological and psychological research, bedside monitoring and neurorehabilitation may be relevant clinical applications that are yet little explored. A major obstacle to advocate the tool in clinical research is insufficient spatial resolution. Based on a multi-distance high-density optical imaging setup, we here demonstrate a dramatic increase in sensitivity of the method. We show that optical imaging allows for the differentiation between activations of single finger representations in the primary somatosensory cortex (SI). Methodologically our findings confirm results in a pioneering study by Zeff et al. (2007) and extend them to the homuncular organization of SI. After performing a motor task, eight subjects underwent vibrotactile stimulation of the little finger and the thumb. We used a high-density diffuse-optical sensing array in conjunction with optical tomographic reconstruction. Optical imaging disclosed three discrete activation foci one for motor and two discrete foci for vibrotactile stimulation of the first and fifth finger, respectively. The results were co-registered to the individual anatomical brain anatomy (MRI) which confirmed the localization in the expected cortical gyri in four subjects. This advance in spatial resolution opens new perspectives to apply optical imaging in the research on plasticity notably in patients undergoing neurorehabilitation

    Dissociable contributions of frontal and temporal brain regions to basic semantic composition

    Get PDF
    Semantic composition is the ability to combine single words to form complex meanings and is an essential component for successful communication. Evidence from neuroimaging studies suggests that semantic composition engages a widely distributed left-hemispheric network, including the anterior temporal lobe, the inferior frontal gyrus and the angular gyrus. To date, the functional relevance of these regions remains unclear. Here, we investigate the impact of lesions to key regions in the semantic network on basic semantic composition. We conducted a multivariate lesion-behaviour mapping study in 36 native German speaking participants with chronic lesions to the language network after left-hemispheric stroke. During the experiment, participants performed a plausibility judgement task on auditorily presented adjective-noun phrases that were either meaningful (‘anxious horse’), anomalous (‘anxious salad’) or had the noun replaced by a pseudoword (‘anxious gufel’), as well as a single-word control condition (‘horse’). We observed that reduced accuracy for anomalous phrases is associated with lesions in left anterior inferior frontal gyrus, whereas increased reaction times for anomalous phrases correlates with lesions in anterior-to-mid temporal lobe. These results indicate that anterior inferior frontal gyrus is relevant for accurate semantic decisions, while anterior-to-mid temporal lobe lesions lead to slowing of the decision for anomalous two-word phrases. These differential effects of lesion location support the notion that anterior inferior frontal gyrus affords executive control for decisions on semantic composition while anterior-to-mid temporal lobe lesions slow the semantic processing of the individual constituents of the phrase

    Web-based language production experiments: Semantic interference assessment is robust for spoken and typed response modalities

    Get PDF
    For experimental research on language production, temporal precision and high quality of the recorded audio files are imperative. These requirements are a considerable challenge if language production is to be investigated online. However, online research has huge potential in terms of efficiency, ecological validity and diversity of study populations in psycholinguistic and related research, also beyond the current situation. Here, we supply confirmatory evidence that language production can be investigated online and that reaction time (RT) distributions and error rates are similar in written naming responses (using the keyboard) and typical overt spoken responses. To assess semantic interference effects in both modalities, we performed two pre-registered experiments (n = 30 each) in online settings using the participants' web browsers. A cumulative semantic interference (CSI) paradigm was employed that required naming several exemplars of semantic categories within a seemingly unrelated sequence of objects. RT is expected to increase linearly for each additional exemplar of a category. In Experiment 1, CSI effects in naming times described in lab-based studies were replicated. In Experiment 2, the responses were typed on participants' computer keyboards, and the first correct key press was used for RT analysis. This novel response assessment yielded a qualitatively similar, very robust CSI effect. Besides technical ease of application, collecting typewritten responses and automatic data preprocessing substantially reduce the work load for language production research. Results of both experiments open new perspectives for research on RT effects in language experiments across a wide range of contexts. JavaScript- and R-based implementations for data collection and processing are available for download

    Longitudinal trajectories of electrophysiological mismatch responses in infant speech discrimination differ across speech features

    Get PDF
    Infants rapidly advance in their speech perception, electrophysiologically reflected in the transition from an immature, positive-going to an adult-like, negative-going mismatch response (MMR) to auditory deviancy. Although the MMR is a common tool to study speech perception development, it is not yet completely understood how different speech contrasts affect the MMR’s characteristics across development. Thus, a systematic longitudinal investigation of the MMR’s maturation depending on speech contrast is necessary. We here longitudinally explored the maturation of the infant MMR to four critical speech contrasts: consonant, vowel, vowel-length, and pitch. MMRs were obtained when infants (n = 58) were 2, 6 and 10 months old. To evaluate the maturational trajectory of MMRs, we applied second-order latent growth curve models. Results showed positive-going MMR amplitudes to all speech contrasts across all assessment points that decreased over time towards an adult-like negativity. Notably, the developmental trajectories of speech contrasts differed, implying that infant speech perception matures with different rates and trajectories throughout the first year, depending on the studied auditory feature. Our results suggest that stimulus-dependent maturational trajectories need to be considered when drawing conclusions about infant speech perception development reflected by the infant MMR

    Association of postpartum maternal mood with infant speech perception at 2 and 6.5 months of age

    Get PDF
    Importance: Language development builds on speech perception, with early disruptions increasing the risk for later language difficulties. Although a major postpartum depressive episode is associated with language development, this association has not been investigated among infants of mothers experiencing a depressed mood at subclinical levels after birth, even though such a mood is frequently present in the first weeks after birth. Understanding whether subclinical depressed maternal mood after birth is associated with early language development is important given opportunities of coping strategies for subclinical depressed mood.Objective: To examine whether depressed maternal mood at subclinical levels 2 months after birth is associated with infant speech perception trajectories from ages 2 to 6.5 months.Design, setting, and participants: In this longitudinal cohort study conducted between January 1, 2018, and October 31, 2019, 46 healthy, monolingual German mother-infant dyads were tested. The sample was recruited from the infants database of the Max Planck Institute for Human Cognitive and Brain Sciences. Initial statistical analysis was performed between January 1 and March 31, 2021; the moderation analysis (results reported herein) was conducted between July 1 and July 31, 2022.Exposures: Mothers reported postpartum mood via the German version of the Edinburgh Postnatal Depression Scale (higher scores indicated higher levels of depressed mood, with a cutoff of 13 points indicating a high probability of clinical depression) when their infants were 2 months old.Main outcomes and measures: Electrophysiological correlates of infant speech perception (mismatch response to speech stimuli) were tested when the infants were aged 2 months (initial assessment) and 6.5 months (follow-up).Results: A total of 46 mothers (mean [SD] age, 32.1 [3.8] years) and their 2-month-old children (mean [SD] age, 9.6 [1.2] weeks; 23 girls and 23 boys) participated at the initial assessment, and 36 mothers (mean [SD] age, 32.2 [4.1] years) and their then 6.5-month-old children (mean [SD] age, 28.4 [1.5 weeks; 18 girls and 18 boys) participated at follow-up. Moderation analyses revealed that more depressed maternal subclinical postpartum mood (mean [SD] Edinburgh Postnatal Depression Scale score, 4.8 [3.6]) was associated with weaker longitudinal changes of infants' electrophysiological brain responses to syllable pitch speech information from ages 2 to 6.5 months (coefficient: 0.68; 95% CI, 0.03-1.33; P = .04).Conclusions and relevance: The results of this cohort study suggest that infant speech perception trajectories are correlated with subclinical depressed mood in postpartum mothers. This finding lays the groundwork for future research on early support for caregivers experiencing depressed mood to have a positive association with children's language development

    Production and comprehension of prosodic boundary marking in persons with unilateral brain lesions

    Get PDF
    Purpose: Persons with unilateral brain damage in the right hemisphere (RH) or left hemisphere (LH) show limitations in processing linguistic prosody, with yet inconclusive results on their ability to process prosodically marked structural boundaries for syntactic ambiguity resolution. We aimed at systematically investigating production and comprehension of three prosodic cues (f 0 range, final lengthening, and pause) at structural boundaries in coordinate sequences in participants with right hemisphere brain damage (RHDP) and participants with left hemisphere brain damage (LHDP).Method: Twenty RHDP and 15 LHDP participated in our study. Comprehension experiment: Participants and a control group listened to coordinate name sequences with internal grouping by a prosodically marked structural boundary (grouped condition, e.g., "(Gabi und Leni) # und Nina") or without internal grouping (ungrouped condition, e.g., "Gabi und Leni und Nina") and had to identify the target condition. The strength and combinations of prosodic cues in the stimuli were manipulated. Production experiment: Participants were asked to produce coordinate sequences in the two conditions (grouped, ungrouped) in two different tasks: a Reading Aloud and a Repetition experiment. Accuracy of participants' productions was subsequently assessed in a rating study and productions were analyzed with respect to use of prosodic cues.Results: In the Comprehension experiment, RHDP and LHDP had overall lower identification accuracies than unimpaired control participants and LHDP were found to have particular problems with boundary identification when the pause cue was reduced. In production, LHDP and RHDP employed all three prosodic cues for boundary marking, but struggled to clearly mark prosodic boundaries in 28% of all productions. Both groups showed better performance in reading aloud than in repetition. LHDP relied more on using f 0 range and pause duration to prosodically mark structural boundaries, whereas RHDP employed final lengthening more vigorously than LHDP in reading aloud.Conclusions: We conclude that processing of linguistic prosody is affected in RHDP and LHDP, but not completely impaired. Therefore, prosody can serve as a relevant communicative resource. However, it should also be considered as a target area for assessment and treatment in both groups

    An online database of infant functional near infraRed spectroscopy studies: a community-augmented systematic review

    Get PDF
    Until recently, imaging the infant brain was very challenging. Functional Near InfraRed Spectroscopy (fNIRS) is a promising, relatively novel technique, whose use is rapidly expanding. As an emergent field, it is particularly important to share methodological knowledge to ensure replicable and robust results. In this paper, we present a community-augmented database which will facilitate precisely this exchange. We tabulated articles and theses reporting empirical fNIRS research carried out on infants below three years of age along several methodological variables. The resulting spreadsheet has been uploaded in a format allowing individuals to continue adding new results, and download the most recent version of the table. Thus, this database is ideal to carry out systematic reviews. We illustrate its academic utility by focusing on the factors affecting three key variables: infant attrition, the reliability of oxygenated and deoxygenated responses, and signal-to-noise ratios. We then discuss strengths and weaknesses of the DBIfNIRS, and conclude by suggesting a set of simple guidelines aimed to facilitate methodological convergence through the standardization of reports
    corecore